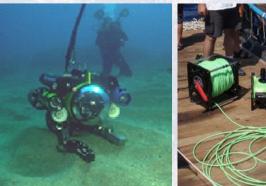
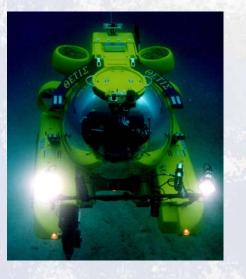
ROV Operator Workshop Feb 2012 Geomar, Kiel.

HCMR Underwater Activities


Dr. Chris Smith Underwater Activities Team Hellenic Centre for Marine Research

History/Vehicles



1990: Benthos Mini Rover 1999: DSSI Max Rover 1999: Comex "Thetis" 600 m 1999: Super-Achilles 500 m 2009: Seabox LBV 2010: Saab Falcon

300 m 2000 m 200 m 300 m

Principal Platforms

RV Aegaeo

- 65 m
- 20 Scientists
- No dp
- Carries ROV
- Thetis or Deep Tow
- 1.5 Containers

Principal Platforms

RV Philia

- 26 m
- 6 Scientists
- No dp
- Carries ROV (to 2000 m)
- Not much else at the same time

Operational Personnel

Personnel: 6 (full time HCMR, part-time UA team)

- Submarine Pilots (1+1)
- Submarine Engineers (Hydraulics 1)
- ROV Pilots (5)
- ROV Engineers (electrical/tronics 2)
- Divers (2, for deployment and recovery)
- Most personnel are cross-qualified

Geographical Area

Operational Areas to Date

- Greece (Ionian, Aegean, Libyan Seas)
- Balearic Sea
- Egypt (Nile Fan)
- Red Sea (Saudi)

Max Rover

Built: **DSSI 1999** (now Oceaneering) Converted: HCMR 2011 to fibre optic 2000 m Depth: Power: 12 hp/14 Kw, 1 ph. Weight: 900 Kg Payload: 100 Kg - used Manip: 2×5 -funct Cameras: 2 HDTV, 3 CCD Tritech, Scan, SSS, PSBP Sonar: RDL DVL (still integrating) Nav: 3 phase 25 hp, 5 ton (2.4m³) Winch:

Max Rover

Built: **DSSI 1999** (now Oceaneering) Converted: HCMR 2011 to fibre optic 2000 m Depth: Power: 12 hp/14 Kw, 1 ph. Weight: 900 Kg Payload: 100 Kg - used 2 x 5-funct Manip: Cameras: 2 HDTV, 3 CCD Tritech, Scan, SSS, PSBP Sonar: Nav: RDL DVL (still integrating) 3 phase 25 hp, 5 ton Winch:

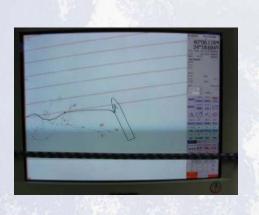
Max Rover

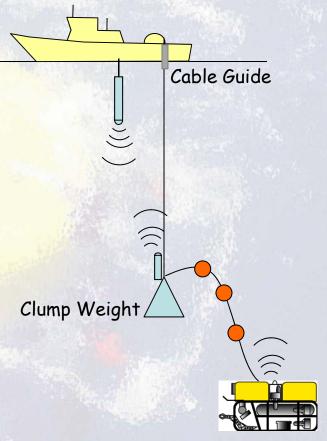
Consoles - all transportable racks

Max Rover: Upgrade

2011 Fibre Optic Upgrade

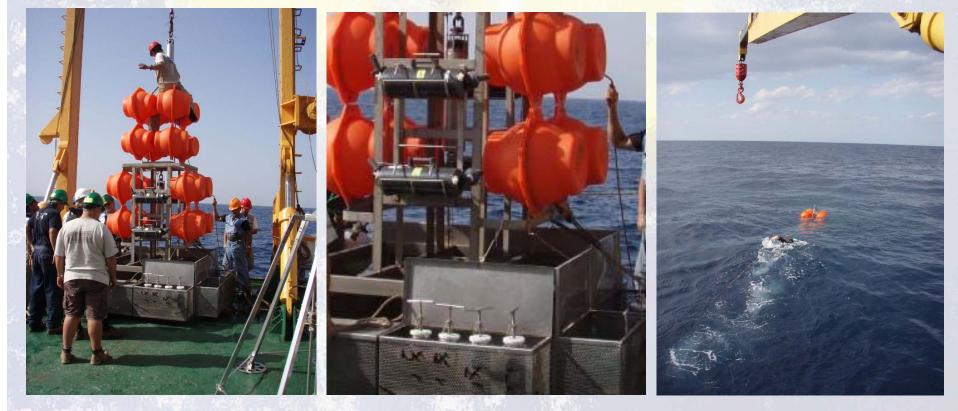
- Inserted between the top and bottom
- Smaller armoured cable (19 vs 32 mm)
- FO Sliprings external on winch
- Macartney Nexus system for FO signal
- Oil filled cables
- HDTV Cameras
- Scaling lasers
- Additional HID Lights
- PSBP sonar
- Toolskid
- Floatation




Operations & Positioning

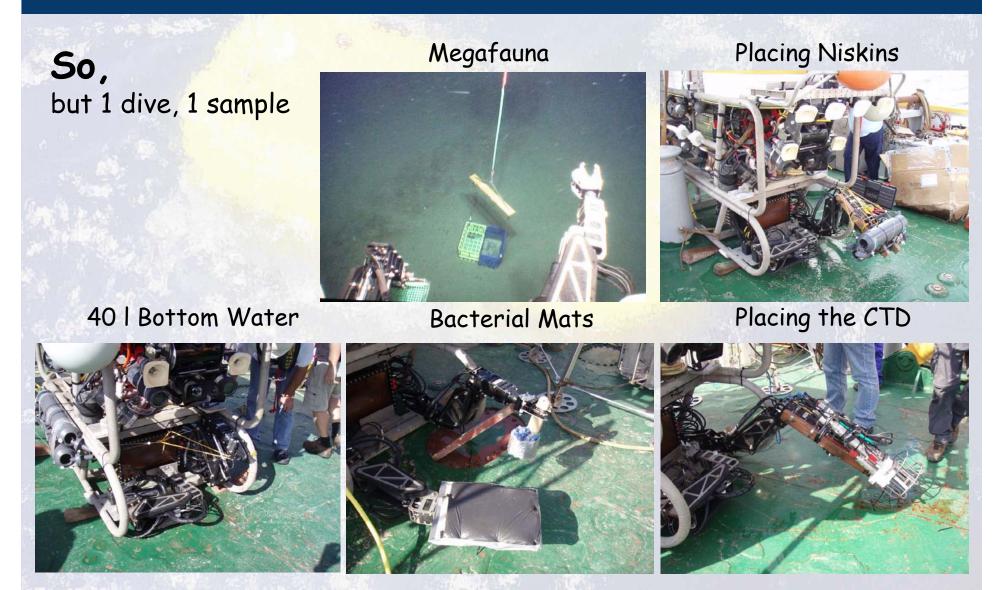
Live boating (min. depth 70 m) Positioning USBL Systems — •Trackpoint 3000 m (!) •Tracklink 1000 m (!) •Tracklink 10000 m (?) Through Captains Nav Computer DVL being integrated (RDL) GPS

ROV Operations


Operation Type Internal Science Projects: External Science Projects: Services:

Time 30% 30% 40%

Science Operations



- Primarily Video Survey
- Limited sample carrying capacity
- External Sampling Basket (problematical)

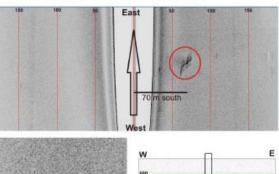
Science Operations

Services

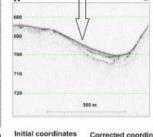
Recent Services

- Search and Survey
- State's first response to maritime disaster
- Mirage and F16 fighter jets
- Chinook army helicopter
- Sea Diamond cruise liner

Search and Survey



Joint Techniques - Geologists


- Large area survey (multibeam)
- Systematic search and target location (side scan sonar and sub bottom profiler)
- Target identification Us

Target S14 LINE 24-25 June 2007

WEST

 Lat 34 40,002
 Corrected coordinates

 Lat 34 40,002
 Lat 34 39,964

 Long 25 32,215
 Long 25 31,541

 Time: 02:35:33
 Depth: 525 m

 Layback: 1119m
 Depth: 525 m

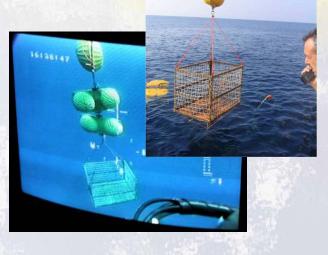
THETIS diva, Monday, June 25, 16:00-18:00 25-30m long crust, 0.7-1m thick, outcropping on a gentle slope with many whitish small patches on the small cliff of the part HCMR Geophysics

Search and Survey

Submarine Techniques Archaeological excavation and recovery

State Support

Chinook Helicopter Search & Survey 875 m



State Support

Sea Diamond Survey & Recovery Work

10000000

Some Small Points

Reflections over the years

Corporate Identity Get all the scientists involved Team building is important There are reasons for checklists and packing lists Always have a back-up plan (mulitcorer, CTD) The job is not finished until everything is clean, back in its place with a 'to do' list for faults/replacements. Record everything and keep the records on

EN.KE.O.F.

Some Help: update current science ROVs

ROV	Depth	Weight	Payload	Horse	Operator	Country
Name	Rating (m)	(kg)	(kg)	Power		
ABISMO*	11000	3397		13	JAMSTEC	Japan
Aglantha	2000	740	100	26	Argus/University of Bergen/IMR	Norway
Bathysaurus	5000	850	110	14	Argus/University of Bergen/IMR	Norway
Doc Ricketts	4000	4760	275	75	MBARI	USA
Dolphin	3300	3800	150	67	JAMSTEC	Japan
Holland I	3000	3240	312	100	Marine Institute	Ireland
ISIS	6500	3000	190	30	National Oceanography Centre	UK
Jason 2	6500	3000	150	30	WHOI	USA
Kaiko 7000**	7000	5600	150	47	JAMSTEC	Japan
Kiel 6000	6000	3700	100	80	IFM-GEOMAR	Germany
Kraken	1000	635	80	13	University of Connecticut	USA
Luso	6000	2200	200	60	EMEPC	Portugal
Nereus***	11000	2800	25	7	WHOI	USA
Phoca	3000	1500	100	37	IFM-GEOMAR	Germany
Quest 5	4000	3300	250	80	Marum	Germany
ROPOS	5000	2700	200	40	CSSF	Canada
Ventana	2300	2570	400	40	MBARI	USA
Victor	6000	4600	150	80	IFREMER	France

From: Smith, C.J., and Rumohr, H. (20XX) Imaging Techniques. pp 87-11. In: Methods for the Study of Marine Benthos (4th Edition). Eds. A. Eleftheriou and A. McIntyre. Blackwell Science, Oxford. 418 pp.